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Galilean limit of equilibrium relativistic mass distribution 
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Abstract The low-tempemlure form af the equilibrium relativistic mass distribution is subject 
to the G n M a  limit by [ding e + m. In this limit the relativistic Maxwell-BolQmann 
distribution passes to the usual non-relativistic form and the Dulong-Petit la%' is recovered. 

1. Introduction 

In a previous paper [ I ]  we studied an equilibrium relativistic ensemble. described by an 
equilibrium relativistic Maxwell-Boltzmann distribution with variable mass. For such a 
system a well defined mass distribution was found, consistent in low-temperature limit with 
the one obtained by Hakim [2]  from the well known Jiittner-Synge distribution [3] of an on- 
mass-shell relativistic kinetic theory. Calculations of the average values of mass and energy 
gave in the low-temperature limit a correction of the order of 10% to the Dulong-Petit law. 

In the present paper we consider the Galilean limit of the low-temperature form of the 
equilibrium relativistic mass distribution. We show that no correction to the Dulong-Petit 
law appears in this limit of the theory. 

We remark that the low-temperature limit does not necessarily coincide with the non- 
relativistic limit of a theory. For example, very long wavelength radiation in Maxwell's 
relativistic theory does not coincide with the static Coulomb limit; it is still radiation. The 
limit must be carried out with special care to include a deformation of the Lorentz group 
to the Galilean group. The limit c -+ cq. carefully canied out, can do this, and this is 
the program of the present paper. The intrinsically relativistic mass distribution we found 
in the previous work, valid even at low temperatures, is deformed in the Galilean limit. 
The results we report here are known, of course, directly from the older Galilean statistical 
mechanics. Our purpose is to demonstrate the smoothness of this limit, and hence to show 
that the relativistic theory is a proper generalization of the idealized Galilean theory. 

2. Preliminary remarks 

In a previous paper. having begun with the low-temperature form of the relativistic Maxwell- 
Boltzmann distribution [ I ,  equation (47)] (we use the metric gfl" = (-, +, +, +), q = 
q', p = p', and take f i  = c = I unless otherwise specified): 
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which coincides with the Jijttner-Synge distribution adopted for an on-mass-shell relativistic 
kinetic theory. Here p” is the energy-momentum 4-vector of the one-body distribution, 
and y = q’ the spacetime position coordinates of the events of the ensemble. The 
constant entropy limit of the Maxwell-Boltzmann distribution implies that the distribution 
function contains a linear combination of the components of p’. The coefficient pf acquires 
interpretation, through the normalization of the distribution and Lorentz invariance, as 
proportional to the total energy-momentum of the system [I]. 

We obtained the following low-temperature form of the equilibrium relativistic mass 
distribution [ 1, equation (48)l: 
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where m, = 
system and K1 is a Bessel function of the third kind (imaginary argument), 

is a constant proportional to the total invariant mass of the N-body 

rri 
2 K , ( z )  = - e“’y’2H,(1)(iz). 

In equation (2) ,  2Am,  corresponds to I/ksT [ I ,  equation (13)], iR. A = 1/2m,k~T carries 
the temperature dependence of the distribution. 

The distributions (1) and ( 2 )  give the following values of the average 4-momentum and 
mass: 

In the local rest frame we have 

( E )  = 4 k ~ T  (3) 

(4 ) 

and, consequently, 

( E )  - (m)  = y$kBT 
where y = (16 - 3 ~ ) / 6  m 1.1 represents a relativistic correction to the Dulong-Petit law. 

This result follows directly from equilibrium thermodynamics without imposing the 
geometrical restriction of the precise Galilean group to an infinitely sharp mass shell. :As we 
have pointed out, the low-temperature limit of the relativistic theory does not automatically 
go to the Galilean limit (corresponding to a deformation of the symmetry group from 
Poincart to Galilean invariance), i.e. the reason for the appearance of such a correction is 
determined by the fact that the difference E - m ,  even in the low-temperature limit, does not 
correspond to the expression for non-relativistic energy p z  J2m. Therefore, the result that 
we have found cannot be considered as a non-relativistic limit; it is actually a relativistic 
low-temperature limit alone. 

As is well known 141, the structure of the Galilean group, the symmetry of non- 
relativistic system, implies that the mass of a particle must be a constant intrinsic property. 

In this paper we shall consider the Galilean limit of equilibrium relativistic ensemble 
which has been treated in the series of papers [ I ,  SI, by taking c + cc 16, 71. We shall see 
that in the Galilean limit the difference E - m approaches the non-relativistic expression 
p z / 2 M ,  where Galilean mass M coincides with the particle’s intrinsic parameter. This 
variable p2/2M turns out to be distributed over the ensemble with the usual non-relativistic 
Maxwell-Boltzmann distribution, due to the fact that the relativistic relation between the 
energy E and the mass m, EZ = m2+$ transforms in the Galilean limit to E = m + p 2 / 2 M ,  
giving rise to the Maxwell-Boltzmann distribution of the latter. The first moment of this 
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distribution ( p 2 / 2 M )  (which coincides with ( E  - m ) ) ,  takes the value i k s T ,  in agreement 
with the Dulong-Petit law. 

We recognize, however, that the applicability of the Galilean group is an idealization 
of a world which seems to be more correctly described by the Poincark group, and the 
Galilean limit is just a reasonable approximation for the relativistic relation E 2  = m2 + p 2 .  
The work reported here demonstrates that the relativistic theory is a proper generalization 
of the idealized Galilean theory studied in the non-relativistic framework, and approaches 
it  smoothly as c + 03. 

3. Galilean limit of a free relativistic N-particle system 

We consider a system of N particles in the framework of a manifestly covariant mechanics 
[8], both for the classical theory and for the corresponding relativistic quantum theory. For 
the classical case, the dynamical evolution of such a system is governed by the equations 
of motion that are of the form of Hamilton equations for the motion of N events which 
generate the spacetime trajectories (particle world lines). These events are considered as 
the fundamental dynamical objects of the theory; they are characterized by their positions 
q F  = (c t ,  r )  and energy-momenta p’ = ( E / c ,  p )  in an 8N-dimensional phase space. The 
motion is parametrized by an invariant parameter r [8], called the ‘historical time’. The 
collection of events (called ‘concatenation’ [9]) along each world line corresponds to a 
particle, and hence the evolution of the state of the N-event system describes, a posteriori, 
the history in space and time of an N-particle system. 

For the quantum case, the dynamical evolution is governed by a generalized Schrodinger 
equation for the wavefunction @r(ql, q 2 ,  . . . , qN) E L2(R4N). the Hilbert space of square 
integrable functions with measure dql d q 2 . .  .dqN d4Nq, describing the distribution of 
events and representing the probability amplitudes for finding events at spacetime points 
(qf. 4:. . . . , q;) at any instant 5 :  

where K is the dynamical evolution operator (generalized Hamiltonian), of the same form 
for both classical and quantum cases. 

We shall consider here a many-particle system, within the framework of the relativistic 
generalization of the usual non-relativistic Boltzmann theory [5]. 

To study the non-relativistic limit of a dilute gas of events, it is sufficient to treat the 
simplest case of a system of N free particles with the Hamiltonian 

N F 
P i p P i  

i=I 
where Mi are positive parameters, the given intrinsic properties of the particles, having the 
dimension of mass. 

The Hamilton equations 

yield, in this case, 
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The evolution of the wavefunction is described by the equation 

The wavefunction can be expressed as a Fourier transform 

'&z(ql- .. . r q N )  = - d4p l  . . .d4pNe('/")% Pc:'4t,a$Ir(pI,, , , , p N )  

(7) 
If this wavefunction is to be associated with particles, the function pr(pl, , . . , p ~ )  = 
e-i/fiKn'@o(pl,. . . , P N )  must have support in momentum space in a region which is in the 
neighbourhood of definite masses (as pointed out in 171, these considerations are valid also 
in the presence of interaction, if it is not too strong). In the non-relativistic limit this support 
should approach the corresponding definite mass shells, consistent with a representation of 
the Galilean group. 

We shall, therefore, require that the quantities 

c i = E j - M , c Z  i = 1 .  ..., N (8) 
constructed of variables occuring in the integrand of (7), i.e. in the support of 
@,(PI, . . . , p ~ ) ,  be finite as c + 00 (compared to all other velocities) for the states with 
finite momenta. 

We shall see that it is sufficient that the support of @r (P I , .  . I ,  P N )  contract such that 
the variables 

=?(mi - M i )  i = 1 , .  .. , N (9) 
may take any value, however, finite, as c -+ 00; or, equivalently, 

(The situation is quite similar to one in relativistic classical statistical mechanics, when this 
freedom permits one to obtain the Galilean microcanonical ensemble 161.) 

Indeed, in this case one can show that the values E, - micz are equal to 

E i - m i c  2 -  --+O P: i = 1. .... N 2Mi 
and approach non-relativistic kinetic energies of particles with the Galilean masses Mi as 
c+OO: 

- mic' = JW - micz 

= (vi + ~ j c 2 ) 2  + p:c2 - micZ 
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Consequently, the quantities 

are finite as c + 00. as was required from the very beginning. 

Galilean limit: 
Now we turn to investigate the behaviour of the wavefunction fr(sl, . . . ,9,,,) in the 

Although the support of $!a(pt. . . . . P N )  is bounded in the Vk’S as c --f 03, the integrals 
over the q k s  can approximately yield factors of S( tk  - T ) ,  as remarked in [7]. Consider the 
case for which @0(pl,. . . , PN) is independent of q t ,  f o r k  = 1, .  . ., N ,  in - p  < qk < Ak 
and is zero outside this region; then the wavefunction (14) is proportional to the product 

where 

A = min(A,, A*, . . . , AN)  

and 

JA/h(T - f k )  + 8 ( T  - f k )  

ift  h + 0 (it is clear now that A + 0 precisely would be an unsuitable condition for the 
non-relativistic limit). The dispersion of tk around T ,  bounded by 

Iik - t( < ?Z/‘Ak < ?I/’A 

is therefore a purely quantum effect (it does not depend on c and vanishes with h + 0), 
emerging asymptotically from a relativistic quantum theory in the Galilean limit, as 
emphasised in [7] .  

t A --f w may also satisfy this condition; in the present paper we shall use the fact that A CM take my 
infinitesimal value but not zero. 
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Thus we will have 

which means that the times associated with all of the particles become synchronized in the 
Galilean limit: 

(17) ctl = ctz = . . . = CZN = ct = c r .  
This result also can be obtained from the canonical equations of motion 

We have with the help of (8) 

Since, according to the equations of motion, 

it follows that 

Now choosing in the initial instant tk(0) = t (0)  for all of the p a r ~ ~ ~ l e s .  k = I ,  , . . , N, and 
taking c + 00, we obtain (17). 

Finally, taking into account all of the above mentioned considerations, we can see that 
the initial wavefunction $r (q l , .  . . , QN) in the Galilean limit approaches the non-relativistic 
expression 

dzp, . . , d3pN e ( i / ~ ) ~ N ~ ; " . , ~ ~ r ~ - ~ / z M l f )  e-(i/h)p@obl, , , , , PN) (19) 

up to an additional phase factor e--(i/h)p, where 
N 

rp = McZt/2 M = Z M k  
k=I 

4. Galilean limit of the relativistic Maxwell-Boltzmann distributlon 

We now wish to consider the Galilean limit of the low-temperature form of equilibrium 
relativistic mass distribution (2).  which, including explicit factors of c,  is 

In the Galilean limit c + 00 the argument of the if-function goes to infinity. Using the 
asymptotic formula [ 101 
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we obtain 

and after normalization we have the following mass distribution (we again suppress c) :  

This formula coincides with the corresponding limit of the mass distribution of Hakim [2] 

(the limit z + 00 of K , ( z )  is independent of U in leading order). 
The distribution (20) gives the following average values: 

(m)  = $kBT (m’) = ?(ksT)’ (21) 

more generally, 

Following the method of Hakim [2], we compute ( E )  with the distribution! 

i.e. 

where the estimate is made for large c. This result provides the normalized distribution 

It then follows that 
e + 3)! 

(E‘) = L(kBT)L 
3! 

and 

( E )  = 4 k ~ T  (25) 
which, in fact, coincides in form with the low-temperature limit of the relativistic theory (3 ) .  

(26) 

Therefore, taking into account (21) and (25), we obtain 

( E )  - (m)  = i k ~ T  
in agreement with the Dulong-Petit law. 

has the usual non-relativistic Maxwell-Boltzmann disaibution. 

having equal intrinsic parameters: 

In conclusion we shall show that in the Galilean limit the variable E - m = p 2 / 2 M  

In the framework of the relativistic Boltzmann theory [ 1. 51 particles are considered as 

MI = M ? =  . . .  = M a = M  

t The quantity E coincides with E in the local ~ s t  frame. 
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It then follows from the relations 
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q = m - M  - A < q < A  

that 

M - A  < m < M +  A .  (27) 

From the normalization conditions for the relativistic Maxwell-Boltzmann distribution in 
the low-temperature limit 11, equations (2)  and (47)], we have 

(n(q)  is the total number of events per unit spacetime volume i n  the system in the 
neighbourhood of the point 4). This integral written in the local rest frame p: = (mc, 0) 
takes on the form (ZAm, = I/ksT) 

dEdaPee-E/kBT s 
S d p  s 

Taking into account ( I  1) ad (27). one can rewrite this expression as follows: 
M+A 

3 dm e-(m+Ppf/2M)lk~T = d3pe-@2!2Ml dm e-m/ksT . 

The latter integral 

does not vanish since A is finite (it enters the normalization factor). We see that the 
freedom of A to take any value (in this case not necessary infinitesimal but < M ) ,  finite as 
c + 00 but not equal to zero, enables one to obtain the non-relativistic Maxwell-Boltzmann 
distribution for e p z / 2 M .  

Finally, we have 

which is the usual (normalized) non-relativistic Maxwell-Boltzmann distribution 

5. Concluding remarks 

We have considered the Galilean limit of equilibrium relativistic ensemble. We have found 
that the relativistic relation between the energy E and the mass m transforms in this limit 
to E = m + p z / 2 M ,  giving rise to the non-relativistic Maxwell-Boltzmann distribution of 
p z / 2 M .  The first moment of this distribution (g/2M) (which coincides with (E - m ) )  
is equal to i k s T ,  in agreement with the Dulong-Petit law, and no relativistic correction 
appears in this limit, i n  contrast to [I], 

For the case of an equilibrium relativistic ensemble of indistinguishable ei'ents [ I  I] the 
distribution function is found to be 
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In the Galilean limit i t  becomes the usual non-relativistic distribution of Bose-Einstein or 
Fermi-Dirac, with chemical potential pG = p - ( M / N )  [ 121, where p is the chemical 
potential of relativistic theory [6], M the Galilean mass and N is the total number of 
particles. 
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